Hilbert quasi-polynomial for order domain codes

نویسندگان

  • Carla Mascia
  • Giancarlo Rinaldo
  • Massimiliano Sala
چکیده

We present an application of Hilbert quasi-polynomials to order domain codes, allowing the effective computation of the order domain condition in a direct way. We also provide an improved and specialized algorithm for the computation of the related Hilbert quasi-polynomials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semistar dimension of polynomial rings and Prufer-like domains

Let $D$ be an integral domain and $star$ a semistar operation stable and of finite type on it. We define the semistar dimension (inequality) formula and discover their relations with $star$-universally catenarian domains and $star$-stably strong S-domains. As an application, we give new characterizations of $star$-quasi-Pr"{u}fer domains and UM$t$ domains in terms of dimension inequal...

متن کامل

The Bramble-hilbert Lemma *

In numerical analysis, the Bramble-Hilbert lemma bounds the error of an approximation of a function u by a polynomial of order at most m− 1 in terms of derivatives of u of order m. Both the error of the approximation and the derivatives of u are measured by L norms on a bounded domain in R. This is similar to classical numerical analysis, where, for example, the error of interpolation u on an i...

متن کامل

Topics on the Ratliff-Rush Closure of an Ideal

Introduction Let  be a Noetherian ring with unity and    be a regular ideal of , that is,  contains a nonzerodivisor. Let . Then . The :union: of this family, , is an interesting ideal first studied by Ratliff and Rush in [15]. ‎  The Ratliff-Rush closure of  ‎ is defined by‎ . ‎ A regular ideal  for which ‎‎ is called Ratliff-Rush ideal.‎‏‎ ‎ The present paper, reviews some of the known prop...

متن کامل

On the Coefficients of Hilbert Quasipolynomials

The Hilbert function of a module over a positively graded algebra is of quasi-polynomial type (Hilbert–Serre). We derive an upper bound for its grade, i. e. the index from which on its coefficients are constant. As an application, we give a purely algebraic proof of an old combinatorial result (due to Ehrhart, McMullen and Stanley). 1. HILBERT QUASIPOLYNOMIALS Let K be a field, and R a positive...

متن کامل

Skew Generalized Quasi-Cyclic Codes Over Finite Fields

In this work, we study a class of generalized quasi-cyclic (GQC) codes called skew GQC codes. By the factorization theory of ideals, we give the Chinese Remainder Theorem over the skew polynomial ring, which leads to a canonical decomposition of skew GQC codes. We also focus on some characteristics of skew GQC codes in details. For a 1-generator skew GQC code, we define the parity-check polynom...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1607.07241  شماره 

صفحات  -

تاریخ انتشار 2016